
Carl F. Lorenzo
Glenn Research Center, Cleveland, Ohio

Tom T. Hartley
University of Akron, Akron, Ohio

R-Function Relationships for Application
in the Fractional Calculus

NASA/TM—2000-210361

August 2000



The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of peer-
reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by
NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
data bases, organizing and publishing research
results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at (301) 621-0134

• Telephone the NASA Access Help Desk at
(301) 621-0390

• Write to:
           NASA Access Help Desk
           NASA Center for AeroSpace Information
           7121 Standard Drive
           Hanover, MD 21076



Carl F. Lorenzo
Glenn Research Center, Cleveland, Ohio

Tom T. Hartley
University of Akron, Akron, Ohio

R-Function Relationships for Application
in the Fractional Calculus

NASA/TM—2000-210361

August 2000

National Aeronautics and
Space Administration

Glenn Research Center



Available from

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076
Price Code: A03

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22100

Price Code: A03

Available electronically at http://gltrs.grc.nasa.gov/GLTRS

http://gltrs.grc.nasa.gov/GLTRS


NASA/TM—2000-210361 1 

R-Function Relationships 
for Application in the Fractional Calculus 

 
Carl F. Lorenzo* 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

 
 Tom T. Hartley 

University of Akron 
Department of Electrical Engineering 

Akron, Ohio 44325–3904 
 
Abstract 
 

     The F-function, and its generalization the R-function, are of fundamental importance in the 
fractional calculus.  It has been shown that the solution of the fundamental linear fractional 
differential equation may be expressed in terms of these functions.  These functions serve as 
generalizations of the exponential function in the solution of fractional differential equations. 
Because of this central role in the fractional calculus, this paper explores various intrarelationships 
of the R-function, which will be useful in further analysis. 
     Relationships of the R-function to the common exponential function, ,te  and its fractional 
derivatives are shown.  From the relationships developed, some important approximations are 
observed.  Further, the inverse relationships of the exponential function, ,te in terms of the  
R-function are developed.  Also, some approximations for the R-function are developed. 
 
1. Introduction 
 
     The F-function [1] defined as 
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and its generalization the R-function [2], 
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are of fundamental importance in the fractional calculus.  In this paper our interest will be 
confined to ,0=> ct  ,0≥q and .qv ≤   Lorenzo and Hartley [2] have determined a variety of 
relationships associated with the R-function, including those involving relationships with the 
circular and hyperbolic functions as well as other advanced functions.  A few more relationships to 
advanced functions are also presented in the Appendix of this paper.  It has been shown ([1] and 
elsewhere) that the solution of the fundamental linear fractional differential equation 

                                               ( ) ( ) ( ) ( )3.1tftxatxDq
ta =+  

may be expressed in terms of these functions. As in the case of ordinary differential equations 
combinations and convolutions of R-functions are used to express the solutions of systems of 
fractional differential equations.  Because of this central role in the fractional calculus, and since 
                                                      
* Distinguished Research Associate. 
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( ) ( )taFtaR qq ,,0,0, = this paper explores various intrarelationships of the R-function, which will 

be useful in further analysis and application. 
     The general character of the R-function is shown in figure 1.  Figure 1 shows the effect of 
variations of q with 0=v and .1±=a  The exponential character of the function is readily 
observed (see, 1=q ).  
     The Laplace transform of the R-function, starting at 0== ct ,  
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is derived in reference [2].  It is also noted that 
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These relationships will be useful in the analysis that follows. This is special, because in general  
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Alternatively this may be written as 
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In what follows in this paper, intrarelationships between R-functions of different arguments will  
be developed. 
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2. Relationships for 0,mR  in Terms of 0,1R  

 
     This section will develop the relation 
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it is readily seen by substitution that 
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An alternative approach to this problem is available through the Laplace transform,  
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where ( ) ( ) ( ).sincos φφφ icis +=   The inverse transform of this equation, of course, yields the 
equation (2.5) result. 
 
     The 4=m case is now considered, then 
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Again by substitution it is readily verified that 
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Examining the above solutions, equations (2.5) and (2.8), it is observed that the values of the 
coefficients and the a  parameter of the 0,1R -functions lay on the unit circle of the complex plane 
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for their respective m values.   This will be validated for the 3=m  case.  Using the Laplace 
transform we have 
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Inverse transforming yields 
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The above results, equations (2.5), (2.8), and (2.13), are now generalized to give 
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     Thus any 0,mR function may be written in terms of 0,1R for ....3,2,1=m   Consideration of the 

principle value ,0=k  gives the result 
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this is found to be a useful approximation for .mt >   
     The results of equations (2.16) and (2.17) may be generalized to arbitrary positive value for the 
parameter a , this more general result is given by 
 

( ) ( ) ( ) ( )( ) ( )19.2,,...3,2,1,0,,0,/2/2
1

,0,
1

0

/1
0,1

/1
0, =>= ∑

−

=

− matmkcisaRmkcisa
m

taR
m

k

mmm
m ππ  

 and 

( ) ( ) ( ) ( )20.2.,...3,2,1,0,
1

,0,
1

0

/2/2/1
0,

/1

=>= ∑
−

=

− maeea
m

taR
m

k

tmkcisamkimm
m

m ππ

 
     



NASA/TM—2000-210361 5 

       For negative values of the a parameter the following forms apply 
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where ( ) ./12 mk πα +=  
 
 
3. Relationships for 0,/1 mR  in Terms of 0,1R  
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Inverse transforming yields the desired result 
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The general results are seen to be  
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These results are now validated for the 3=m case.  Then 
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     The results of equations 3.10 and 3.11 are extended to the case of a negative a parameter by use 
of the following expressions 
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4. Relationships for the Rational Form 0,/ pmR in Terms of 0,/1 pR  
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where ( )3/2 kcisck π= .  The values for this problem are  

0 1 21, 0.5 0.866 , 0.5 0.866 .c c i c i= = − + = − −  

The kA are determined from partial fraction expansion to be 
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The kA are recognized as /3.k kA c=  This gives the following for the transform 
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The inverse transform then is given as 
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These results also may be generalized to include a nonunity value for the a parameter.  The general 
form is given by  
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The above equations (4.7) and (4.8) allow any rational based, pmq /= , 0,/ pmR -function to be 

expressed in terms of its basis 0,/1 pR -functions. 
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     The results of equations (4.7) and (4.8) are extended to the case of negative a parameter by the 
following equations 
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These results, equations (4.7) to (4.10), are the most general (direct) relationships to the basis 
function presented in this paper.  The 0,/1 pR are seen as basis functions for any 0,/ pmR . 

 
 5. Relationships for 0,/1 pR  in Terms of 0,/ pmR  

 
     This section develops the reciprocal relation to that formed in the previous section.  This form 
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2/1

0,1
2/1

0
2/1

0,2/1 taRataRdtaR t +=  

The case ,4,2 == mp is now considered.  The Laplace transform is given by 

  ( ){ } ( )5.5,
1

,0,
4/12/1

4/12/1

4/12/1

4/12/1

4/12/1

4/12/1

4/12/1
4/1

0,2/1 ias

ias

ias

ias

as

as

as
taRL

+
+

−
−

+
+

−
=  

( )
( )6.5.

3

0
2

2/4/3

2

4/32/12/114/12/3

∑
=

−

−
=

−
+++=

k

kk

as

sa

as

asasas
 

Inverse transforming yields 

 ( ) ( ) ( ) ( )7.5,,0,,0,
3

0
2/,2

4/34/1
0,2/1 ∑

=

−=
k

k
k taRataR  

or 

    ( ) ( ) ( ) ( )8.5.,0,,0,
3

0
0,2

2/
0

4/34/1
0,2/1 ∑

=

−=
k

k
t

k taRdataR  
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The above results are generalized in the following forms 
 

  ( ) ( ) ( ) ( )9.5...,3,2,1,...3,2,1,0,,0,,0,
1

0
/,/

/1/1
0,/1 ==>= ∑

−

=

−− mpataRataR
m

k
pkpm

mkmm
p  

 and 

( ) ( ) ( ) ( )10.5....3,2,1,...3,2,1,0,,0,,0,
1

0
0,/

/
0

/1/1
0,/1 ==>= ∑

−

=

−− mpataRdataR
m

k
pm

pk
t

mkmm
p

 
 

These results will now be tested on the following case .3,2 == mp   Then 

  ( ) ( ) ( ) ( )11.5,,0,,0,
2

0
2/,2/3

3/23/1
0,2/1 ∑

=

−=
k

k
k taRataR  

( ) ( ) ( ) ( )12.5.,0,,0,,0, 1,2/32/1,2/3
3/1

0,2/3
3/2 taRtaRataRa ++=  

Applying the Laplace transform gives 

  ( )13.5,
1

2/32/3

2/13/1

2/3

3/2

3/12/1 as

s

as

sa

as

a

as −
+

−
+

−
=

−
 

( )( ) ( )14.5,
3/22/13/13/12/1

3/22/13/1

asasas

asas

++−
++=  

( )15.5,
1

3/12/1 as −
=  

providing a validation point for the general form (equation 5.9). 
     The results of equations (5.9) and (5.10) may also be extended to the case for a negative a 
parameter. These results are given as  
 

( ) ( ) ( ) ( )( )
( )16.5...,3,2,1,...3,2,1,0

,,0,11,0,
1

0
/,/

/11/1
0,/1

==>

−−=− ∑
−

=

−−−−

mpa

taRataR
m

k

m
pkpm

mkmkmm
p  

and 

( ) ( ) ( ) ( )
( )

1 1 1 / /1/
01/ ,0 / ,0

0
,0, 1 1 ,0, ,

0, 1,2,3... , 1,2,3... . 5.17

m m k mm k m k pm
tp m p

k

R a t a d R a t

a p m

− − − − −

=

   
− = − −

> = =

∑
 

 



NASA/TM—2000-210361 10 

6. Relating 0,/ pmR  to the Exponential Function ( ) btetbR =,0,0,1  

 
     Using the results of the previous sections, it is now possible to express any ( )taRq ,0,0,  in terms 

of ( ) btetbR =,0,0,1 , for pmq /= (rational).  Two results are required, equations (3.11) and (4.8).  

For clarity of discussion we rewrite equation (3.11) in the following terms  

   

( ) ( )

( )1.6....3,2,1,0,

,0,,0,

1

0

/
0

1

1

0
0,1

/
0

1
0,/1

=≥=

=

∑

∑
−

=

−−

−

=

−−

pbedb

tbRdbtbR

p

j

tbpj
t

jp

p

j

ppj
t

jp
p

p

 

Now this result may be directly substituted into equation (4.8) to give 

( ) ( ) ( ) ( )( )
( )2.6....3,2,1...,3,2,1

,,0,
1

,0,
1

0

1

0

/2/1
0,1

/
0

1/2/1/2/1
0,/

==

= ∑ ∑
−

=

−

=

−−−

pm

teaRdeaea
m

taR
m

k

p

j

pmkimpj
t

jpmkimmkimm
pm

πππ

 

This now may be written as 
 

 
( ) ( ) ( ) ( )( )

( )3.6....3,2,1...,3,2,1,0

,,0,
1

,0,
1

0

1

0

/2/
0,1

/
0

/2/
0,/

==≥

= ∑∑
−

=

−

=

−−−

pma

teaRdea
m

taR
m

k

p

j

mkpimppj
t

mjpkimmjp
pm

ππ

 

 

( ) ( ) ( ) ( )( )
( )4.6....3,2,1...,3,2,1,0

,,0,
1

,0,
1

0

1

0

/2/
/,1

/2/
0,/

==≥

= ∑∑
−

=

−

=

−−−

pma

teaRea
m

taR
m

k

p

j

mkpimp
pj

mjpkimmjp
pm

ππ

 

 
Thus, from equation (6.3) the generalized exponential function 0,/ pmR  may now be expressed as a 

function of fractional derivatives of the common exponential function  
 

( ) ( ) ( ) ( )( )
( )5.6....3,2,1...,3,2,1,0

,exp
1

,0,
1

0

1

0

/2//
0

/2/
0,/

==≥

= ∑∑
−

=

−

=

−−−

pma

teadea
m

taR
m

k

p

j

mkpimppj
t

mjpkimmjp
pm

ππ

 

 
These results, equations (6.3) to (6.5), contain the results of equations (2.19), (2.20), (3.10), and 
(3.20). 

  The case for negative a parameter follows a similar development as above. Equation (4.10) is 
written as 

  
( ) ( ) ( )

( )6.6,...3,2,1...,3,2,1,0

,,0,
1

,0,
1

0

/1
0,/1

/1
0,/

==>

−=− ∑
−

=

−

pma

teaRea
m

taR
m

k

im
p

imm
pm

αα
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where ( ) ./12 mk πα +=   Now equation (6.1) may be substituted into equation (6.5) to give 
 

  
( ) ( ) ( ) ( )

( )7.6,...3,2,1...,3,2,1,0

,,0,
1

,0,
1

0

/
0,1

/
0

/
1

0
0,/

==>

−=− ∑∑
−

=

−−
−

=

−

pma

teaRdae
m

taR
m

k

pimppj
t

mmjp
p

j

jpi
pm

αα

 

            or 
  

( ) ( ) ( ) ( )
( )8.6,...3,2,1...,3,2,1,0

,,0,
1

,0,
1

0

/
/,1

/
1

0
0,/

==>

−=− ∑∑
−

=

−−
−

=

−

pma

teaRae
m

taR
m

k

pimp
pj

mmjp
p

j

jpi
pm

αα

 

           or 

 
( ) ( ) ( ) ( )( )

( )9.6....3,2,1...,3,2,1,0

,exp
1

,0,
1

0

//
0

/
1

0
0,/

==>

−=− ∑∑
−

=

−−
−

=

−

pma

teadae
m

taR
m

k

pimppj
t

mmjp
p

j

jpi
pm

αα

 

 
These results, equations (6.3) to (6.5), and (6.7) to (6.9) are the most general (direct) expressions 
for the R-function in terms of the common exponential function presented in this paper. 

 
7. Inverse Relationships—Relationships for 0,1R  in Terms of  kmR ,  

 
     In this and the following sections inverse relationships expressing the exponential function in 
terms of various R-functions will be developed. Consider 

  { } ( )( ) ( )1.7,
1

asas

as

as
eL ta

+−
+=

−
=  

( )2.7.
2222 as

a

as

s

−
+

−
=  

Upon inverse transforming we have 

  ( ) ( ) ( ) ( )3.7.,0,,0,,0, 2
0,2

2
1,20,1 taRataRtaRe ta +==  

In similar fashion for 4=m , we have 

 { } ( )( )( )
( )( )( )( ) ( )4.7,

1

iasiasasas

iasiasas

as
eL ta

+−+−
+−+=

−
=  

( )5.7
44

3223

as

asasas

−
+++=  

( )∑
=

−

−
=

3

0
44

3

6.7.
k

kk

as

sa
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Inverse transforming this result yields 

 ( ) ( ) ( ) ( )∑∑
=

−

=

− ===
3

0

4
0,40

3
3

0

4
,4

3
0,1 7.7.,0,,0,,0,

k

k
t

k

k
k

kta taRdataRataRe  

These results generalize to 
 

   ( ) ( ) ( )8.7,,..3,2,1,0,,0,,0,
1

0
,

1
0,1 =>== ∑

−

=

−− mataRataRe
m

k

m
km

kmta  

    and 

( ) ( ) ( )∑
−

=

−− =>==
1

0
0,0

1
0,1 9.7....3,2,1,0,,0,,0,

m

k

m
m

k
t

kmta mataRdataRe  

 
These results are now used to test the 3=m case. Then  

  ( ) ( ) ( )10.7.,0,,0,
2

0

3
,3

2
0,1 ∑

=

−==
k

k
kta taRataRe  

Thus the Laplace transform is 

  ( )11.7,
1

33

222

0
33

2

as

asas

as

sa

as k

kk

−
++=

−
=

− ∑
=

−

 

( )( ) ( )12.7.
1

22

22

asasasas

asas

−
=

++−
++=  

     For negative values of the a parameter the following forms apply 
 

( ) ( ) ( )( ) ( )13.7,...,3,2,1,0,,0,11,0,
1

0
,

11
0,1 =>−−=−= ∑

−

=

−−−−− mataRataRe
m

k

mm
km

kmkmta  

   and 

( ) ( ) ( )( ) ( )∑
−

=

−−−−− =>−−=−=
1

0
0,0

11
0,1 14.7....3,2,1,0,,0,11,0,

m

k

mm
m

k
t

kmkmta mataRdataRe  

 
 
8. Inverse Relationships—Relationships for 0,1R  in Terms of  0,/1 mR  

 
     In this section we seek to express ( )tR ,0,10,1 in terms of 0,/1 mR , where ....3,2,1=m  The initial 

interest will be .2/1/1 =m  Then 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1.8...
2/522/312/12/12/

,0,1
2/312/102/1

0

2/12/

0,2/1 +
Γ

+
Γ

+
Γ

+
Γ

+
Γ

=
+Γ

=
−∞

=

−

∑ ttttt

k

t
tR

k

k

 

and 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )2.8....

2/522/312/12/12/

1
,0,1

2/312/102/1

0

2/12/

0,2/1 −
Γ

+
Γ

−
Γ

+
Γ

−
Γ

=
+Γ

−=−
−∞

=

−

∑ ttttt

k

t
tR

k

kk
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Therefore it is easily seen that 

                                  ( ) ( ) ( )( ) ( )3.8.,0,1,0,1
2

1
,0,1 0,2/10,2/10,1 tRtRtR −−=  

We now consider the case .4/1/1 =m   Then 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )4.8....
4/64/54/44/34/24/1

4/14/
,0,1

2/14/104/12/14/3

0

4/34/

0,4/1

+
Γ

+
Γ

+
Γ

+
Γ

+
Γ

+
Γ

=

+Γ
=

−−−

∞

=

−

∑
tttttt

k

t
tR

k

k

 

     Now it may be shown by substitution that 

( ) ( ) ( ) ( ) ( )( ) ( )5.8.,0,,0,,0,1,0,1
4

1
,0,1 0,4/10,4/10,4/14/10,1 tiiRtiiRtRtRtR −−+−−=  

As in the previous section this may be generalized as 

( ) ( ) ( )( ) ( )6.8....3,2,1,0,/2/2
1

,0,1
1

0
0,/10,1 == ∑

−

=

mtmkcisRmkcis
m

tR
m

k
m ππ  

Remembering that ( ) tetR =,0,10,1 , this equation (8.6) is recognized as a decomposition (of the    
m-th order ...3,2,1=m ) of the exponential function.  That is, each of these functions is more basic 
than the exponential function in that the exponential function may readily be expressed in terms of 
the “fractional exponential (i.e., ( )taR m ,0,0,/1 )” in closed form (without differintegrating). 
     The results of equation (8.6) may be generalized to arbitrary value for the parameter a , this 
more general result is given by 
 

( ) ( )
( ) ( ) ( )( )

( ) ( ) ( )7.8.,...3,2,1,0,,0,
1

,...3,2,1,0,,0,/2/2
1

,0,,0,1

1

0

/2/1
0,/1

/2/1

1

0

/1
0,/1

/1

0,10,1

=>=

=>=

==

∑

∑
−

=

−

−

=

−

mateaRea
m

matmkcisaRmkcisa
m

etaRtaR

m

k

mkim
m

mkimm

m

k

m
m

mm

at

ππ

ππ  

 
     The approach to the solution for a negative a parameter will now be demonstrated for the case 

.4/1/1 =m  Applying the Laplace transform gives 

( ){ } { }

( )( )( )( ) ( )8.8
11

,0,

4/1
3

4/14/1
2

4/14/1
1

4/14/1
0

4/1

0,1

acsacsacsacsas

eLtaRL at

−−−−
=

+
=

=− −

 

where ( )( ).4/12 π+= kcisck   This may be written as  

  ( )9.8.
1

4/1
3

4/1
3

4/1
2

4/1
2

4/1
1

4/1
1

4/1
0

4/1
0

acs

A

acs

A

acs

A

acs

A

as −
+

−
+

−
+

−
=

+
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The kA are found by partial fractions to be ( ).4/ 4/3acA kk −=  The general form is then validated 

and given as 
 

( ) ( )
( ) ( ) ( )( )

( ) ( ) ( )10.8,,...3,2,1,0,,0,
1

,...,3,2,1,0,,0,
1

,0,,0,1

1

0

/1
0,/1

/1

1

0

/1
0,/1

/1

0,10,1

=>−=

=>−=

=−=−

∑

∑
−

=

−

−

=

−

−

mateaRea
m

matcisaRcisa
m

etaRtaR

m

k

im
m

imm

m

k

m
m

mm

at

αα

αα  

    
where ( ) ./12 mk πα +=  
 

9. Inverse Relationships—Relationships for ( )taReat ,0,0,1=  in Terms of  0,/ pmR   

 

     Using the results of the previous sections, it is now possible to express ( )taReat ,0,0,1=  in 

terms of any ( )tbRq ,0,0, , for pmq /= (rational).  Two results are required, equations (8.7) and 

(5.10).  For clarity of discussion we rewrite equation (5.10) in the following terms 

 ( ) ( ) ( ) ( )1.9....3,2,1,...3,2,1,0,,0,,0,
1

0
0,/

/
0

1
0,/1 ==>= ∑

−

=

−− mpbtbRdbtbR
r

j

r
pr

pj
t

jr
p  

Substituting this equation into equation (8.7) gives 

( ) ( ) ( ) ( )( ) ( )( )( )
( )2.9,...3,2,1,0

,,0,
1

,0,
1

0

/1
1

0
0,/

/
0

1/1/1
0,1

=>

== ∑ ∑
−

=

−

=

−−−

ma

tcisaRdcisacisa
m

etaR
m

k

rm
r

j
mr

mj
t

jrmmmat λλλ
 

  
( ) ( ) ( )( ) ( )( )

( )3.9,...3,2,1...,3,2,1,0

,,0,
1

,0,
1

0

/
1

0
/,/

/
0,1

==>

−== ∑∑
−

=

−

=

−−

mra

trcisaRjrcisa
m

etaR
m

k

mr
r

j
mjmr

mmjrta λλ
 

  
where ./2 mkπλ =  
Alternatively 

  
( ) ( ) ( ) ( )( )

( )4.9....3,2,1...,3,2,1,0

,,0,
1

,0,
1

0

/
1

0
/,/

/
0,1

==>

== ∑∑
−

=

−

=

−−−

mra

teaRea
m

etaR
m

k

rimr
r

j
mjmr

jrimmjrta λλ

 

 
For the case of a negative a parameter, we substitute equation (9.1) into equation (8.10) to give 

( ) ( )

( ) ( ) ( )( ) ( )( )( )
( )5.9,,...3,2,1...,3,2,1,0

,0,
1

,0,,0,1
1

0

1

0

/1
0,/

/
0

1/1
/11

0,10,1

==>

−=

−=−=

∑ ∑
−

=

−

=

−−

−

−

mra

tcisaRdcisacis
am

taRtaRe
m

k

r

j

rm
mr

mj
t

jrm

m

at

ααα
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where ( ) ./12 mk πα +=   Thus we have 
 

( ) ( )
( ) ( )( ) ( )( )

( )6.9,,...3,2,1...,3,2,1,0

,0,
1

,0,,0,1
1

0

1

0

/
/,/

/

0,10,1

==>

−−=

=−=−

∑∑
−

=

−

=

−−

−

mra

trcisaRjrcisa
m

etaRtaR
m

k

r

j

mr
mjmr

mmjr

ta

αα

or   

( ) ( ) ( ) ( )
( )7.9.,...3,2,1...,3,2,1,0

,0,
1

,0,1
1

0

1

0

/
/,/

/
0,1

==>

−==− ∑∑
−

=

−

=

−−−−

mra

teaRea
m

etaR
m

k

r

j

rimr
mjmr

jrimmjrta αα

 
The expressions (9.3), (9.4), (9.6), and (9.7) are the most general expressions for the exponential 
function in terms of the general (rational) R-function 0,/ prR (and its fractional derivatives) 

presented in this paper.  
     Tables 1 and 2 summarize the key R-function relationships developed in this paper in a common 
form.  Table 1 presents the relationships for positive b parameter in the left-hand side of 

( )tbR vu ,0,,  function, while Table 2 presents the relationships for a negative b parameter. 

 
Table 1. R-Function Relationships—Positive Parameter 

 Eq. Nos. 

( ) ( ) ( ) ( )( ),0,
1

,0,
1

0

/1
0,1

/1
0, ∑

−

=

−=
m

k

mmm
m tcisaRcisa

m
taR λλ  (2.19) 

( ) ( ) ( ),0,,0,
1

0
/,1

/1/1
0,/1 ∑

−

=

−−=
m

k
mk

mkmm
m taRataR  (3.10) 

( ) ( ) ( ) ( )( ),0,
1

,0,
1

0

/1
0,/1

/1
0,/ ∑

−

=

−=
m

k

m
p

mm
pm tcisaRcisa

m
taR λλ  (4.7) 

( ) ( ) ( ),0,,0,
1

0
/,/

/1/1
0,/1 ∑

−

=

−−=
m

k
pkpm

mkmm
p taRataR  (5.9) 

( ) ( ) ( )( ) ( )( )( ),0,
1

,0,
1

0

1

0

/
/,1

/
0,/ ∑∑

−

=

−

=

−− −=
m

k

p

j

mp
pj

mmjp
pm tpcisaRjpcisa

m
taR λλ  (6.4) 

( ) ( ),0,,0,
1

0
,

1
0,1 ∑

−

=

−−==
m

k

m
km

kmta taRaetaR  (7.8) 

( ) ( )
( ) ( ) ( )( ),0,

1

,0,,0,1
1

0

/1
0,/1

/1

0,10,1

∑
−

=

−=

==
m

k

m
m

mm

at

tcisaRcisa
m

etaRtaR

λλ
 (8.7) 

( ) ( ) ( )( ) ( )( )1 1
/ /

1,0 / , /
00

1,0, ,0,
m r r j rr j m ma t r m

r m j m
jk

R a t e a cis R a cis t
m

− − −− −

==

 
 
 

= = λ λ∑∑  (9.3) 

For this table mkrpma /2,...3,2,1,...3,2,1...,3,2,1,0 πλ ====>   



NASA/TM—2000-210361 16 

Table 2. R-Function Relationships—Negative Parameter 
 Eq. Nos. 

( ) ( ) ( ) ( )( ),0,
1

,0,
1

0

/1
0,1

/1
0, ∑

−

=

−−=−
m

k

mmm
m tcisaRcisa

m
taR αα  (2.21) 

( ) ( ) ( ) ( )( ),0,11,0,
1

0
/,1

/11/1
0,/1 ∑

−

=

−−−− −−=−
m

k

m
mk

mkmkmm
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−

=

−−=−
m

k

m
p

mm
pm tcisaRcisa

m
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0
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( ) ( ) ( )( ) ( )( ),0,
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0
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−

=

−−
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−−=

=−=−
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j

mr
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at
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m

etaRtaR
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For this table ( ) ,/12,...3,2,1,...3,2,1...,3,2,1,0 mkrpma πα +====>  
 

 
10. Approximation of the R-Function 
  

   Various approximations may be developed for the R-function.  A few such approximations   
will be developed here.  As suggested in section 2, the principle value in equation (2.17) provides 
the basis of such an approximation.  The result, equation (2.18), is generalized to  

    ( ) ( )1.10.5.0,,0,1 1
0, >>≈ qtetR t

qq  

The approximation is shown in figure 2.  
   The following is an improved approximation when 1<t and 10 ≤< q .  

    ( ) ( ) ( )2.10.10,0,
1

,0,1
1

5.2

1
0, ≤<>




 −≈ −

−

qt
t

q
etR

q

q
t

qq  

This approximation is shown graphically in Figure 3. 
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      The above approximations, equations (10.1) and (10.2) may be extended to include 
( )taRq ,0,0, in the following manner.  By a simple replacement of the t variable with at we may 

rewrite equation (10.1) as  
 

  ( ) ( )3.101,01,0,,0,1 1
0, >>≥>≈ taqaeatR ta

qq  

 
Now using equation (1.9) along with equation (10.3) we infer the approximation 
 

   ( ) ( ) ( )4.101,0,0,,0,
/1/11

0, >>>≈ − taqaeataR taqq
qq

q

 

  
    When the a parameter of the R-function becomes negative, a different set of approximations is 
required.  The following approximation works well for 21 ≤≤ q  
 

  ( ) ( ) ( ) ( )5.10,2/,212/cos,0,1
25.12

0, ππ >≤≤−≈− −− tqtetR tq
q  

 
This approximation is shown in figure 4.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Improved approximations may be determined for particular values of q by optimizing the 
A,B,C, and D constants in the following equation 

  ( ) ( )( ) ( )6.10.212/cos,0,10, ≤≤−≈− − qtDCeAtR tB
q π  

When the a parameter in equation (10.5) takes on values other than –1 the following approximation 
works reasonably well for values of a not too large 
 

  ( ) ( ) ( ) ( )7.10.21,1,2/cos,0, /12/1
0,

/125.1

≤≤>−≈− −−− qttaeataR qtaqq
q

q

π  
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Figure 5 graphically shows this approximation for .4−=a  
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 Approximations for values of q>2 with parameter a negative, require positive values for the 
argument of the real exponential in the approximation.  For example for 32 ≤≤ q  the following 
approximation  

   

  ( ) ( ) ( )( ) ( )8.101,32,2/4.12.cos,0,1 1.245.12.0
0,

2

>≤≤−+−≈− −+ tqtqetR tqq
q π  

 
is presented in figure 6. 
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11. Discussion 
 

     This paper has presented a variety of relationships relating various R-functions. A key result was 

that 0,qR , with pmq /=  and positive rational, may be written in terms of basis R-functions 0,/1 pR , 

equations (4.7) to (4.10).  Also, reciprocal relationships have been developed expressing 0,/1 pR in 

terms of 0,qR , with pmq /=  and positive rational, (equations (5.9), (5.10), (5.16), and (5.17)). 

     It was also determined that 0,qR , with pmq /=  and positive rational, may be written in terms 

of fractional derivatives of 0,1R -functions (i.e., exponential functions), equations (6.3) to (6.9). 

     Further, the 0,1R  (exponential) functions may in turn be written as a function of basis functions 

0,/1 pR , (equations (7.8), (7.9), (7.13), and (7.14)).  These results have allowed very general 

relationships to be written relating 0,1R to 0,qR and its fractional derivatives, with pmq /=  and 

positive rational, (equations (9.3), (9.4), (9.6), and (9.7)).  

     It is expected that the results presented here should be analytically very useful since the 

,  - functionq vR is the solution or solution basis of many fractional differential equations.  It is also 

observed that all of the above relationships are expressed as finite series, the lengths of which 

depend on m and p.  

      Finally, various approximations of R-functions with both positive and negative arguments have 

been developed.  Clearly these approximations only hint at the possibilities, and much more is 

possible.  
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Appendix 
 
   The following relationships of the R-function with advanced functions are an extension of those 
presented in reference [2].  The expansions used for the defined functions are all taken from 
reference [3]. 
 
The product of the exponential function and the complementary error function is given by 
 

  ( ) ( ) ( )
( ) ( ) ( )1.,0,1

2/1
exp 2/1,2/1

0

−=
+Γ

=± −

∞

=
∑ AxR

n

x
xerfcx

n

n

""
 

 
The error function as given by 
 

   ( ) ( ) ( ) ( ) ( ) ( )2.,0,1,0,1
2/3

exp 2
2/1,1

2
0,1

0

12
2 −−=

+Γ
−= −

∞

=

+

∑ AxRxR
n

x
xxerf

n

n

 

 
The expansion for Dawson’s integral becomes 
 

   ( ) ( )
( ) ( ) ( )3.,0,1

22/32 2/1,1
0

−−=
+Γ

−= −

∞

=
∑ AxR

n

xx
xdaw

n

n ππ
 

 
     Many distributions may be expressed in terms of exponential of powers of x (see [3], p.260).  

Since ( ) ( ) taeatRtaR == ,0,1,0, 0,10,1 these distributions may also be expressed as R-functions. 
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